Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a }}$ Sema
Öztürk, ${ }^{\text {a }}$ Ayse Erçağ, ${ }^{\text {b }}$
Mahmure Üstün Özgür ${ }^{c}$ and Frank W. Heinemann ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\mathbf{b}}$ Chemistry Department, Engineering Faculty, Ístanbul University, 34850 Ístanbul, Turkey, ${ }^{\text {c }}$ Chemistry Department, Faculty of Arts and Sciences, Yıldız Technical University,
34210 Davutpaşa - Ístanbul, Turkey, and $\mathrm{d}_{\text {Institut für Anorganische Chemie, Universität }}$ Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen, Germany

Correspondence e-mail: ozturk@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.049$
$w R$ factor $=0.128$
Data-to-parameter ratio $=15.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

(3E)-3-[(4-Butylphenyl)imino]-1,3-dihydro-2H-indol-2-one

The title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$, has a non-planar conformation. The indol and butylphenyl groups are connected by a $\mathrm{C}-\mathrm{N}$ bond $[1.433$ (3) \AA]. The crystal structure is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Isatin and its derivatives have been used as reagents in the dye industry. Schiff bases of isatin were reported to possess antiHIV (Pandeya et al., 2000), antifungal (Pandeya et al., 1999), antibacterial (Sarangapani \& Reddy, 1994; Varma \& Nobles, 1975), antiviral (Singh et al., 1983), antiprotozoal (Varma \& Khan, 1977) and antihelminthic (Sarciron et al., 1993) activities. The medical and biological implications of this category of ligands has already been proved (Popp \& Pajouhesh, 1982).

The structure of the title compound, (I), is shown in Fig. 1. The $\mathrm{C} 1-\mathrm{C} 2$ bond length $[1.529$ (3) \AA] is within the range $1.49-1.56 \AA$ observed for related compounds found in the Cambridge Structural Database (Allen, 2002). The C2-N2C9 angle is 119.6 (2) ${ }^{\circ}$. In the butyl group, the average $\mathrm{C}-\mathrm{C}-$ C bond angle is 114.7 (3) ${ }^{\circ}$ and this group shows an E form. The indole group is planar [maximum displacement is 0.004 (2) \AA for C 1] and forms a dihedral angle of $89.8(1)^{\circ}$ with the phenyl plane. These bond distances and angles agree with the values reported for (3E)-3-[(4-hexylphenyl)imino]-1 H-indol-2(3H)one (Öztürk et al., 2003).

The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds form zigzag chains, parallel to the b axis (Fig. 2). The geometry of the hydrogen bonds is given in Table 2.

To determine the structural and electronic parameters of (I), quantum-chemical calculations were carried out using the PM3 method (Stewart, 1985). It was found that the charges at atoms O1, N1 and N2 are 0.0382, 0.0609 and $-0.2930 \mathrm{e}^{-}$, respectively. The final heat of formation of (I) is 14.98 kcal and its total energy is -3027.82 eV . The energies of the HOMO and LUMO levels have the values -9.0903 and -0.9315 eV , respectively. The calculated molecule dipole moment is 4.352 Debye.

Received 22 April 2003 Accepted 30 April 2003 Online 9 May 2003

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
A view of the intermolecular hydrogen-bond contacts, showing the zigzag chain which develops parallel to b. [Symmetry codes: (i) $-x,-y,-z$; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$.]

Experimental

The title compound was prepared according to the method of Öztürk et al. (2003). The orange product was recrystallized from methanol (m.p. 451-458 K).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$	$D_{x}=1.232 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=278.34$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 171
$a=15.6069(2) \AA$	reflections
$b=9.5596(2) \AA$	$\theta=6.0-26.0^{\circ}$
$c=10.5265(2) \AA$	$\mu=0.08 \mathrm{~mm}^{-1}$
$\beta=107.187(2)^{\circ}$	$T=294(2) \mathrm{K}$
$V=1500.38(5) \AA^{3}$	Slab, orange
$Z=4$	$0.40 \times 0.31 \times 0.17 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer	$R_{\text {int }}=0.072$
ω scans	$\theta_{\max }=26.0^{\circ}$
Absorption correction: none	$h=-19 \rightarrow 19$
9152 measured reflections	$k=-11 \rightarrow 11$
2938 independent reflections	$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.128$
$S=1.02$
2938 reflections
191 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0558 P)^{2}\right. \\
& \quad+0.2681 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.214(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.531(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.356(3)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.524(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.413(2)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.502(3)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.272(2)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.504(4)$
$\mathrm{N} 2-\mathrm{C} 9$	$1.433(2)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$111.73(16)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 1$	$128.15(18)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 9$	$119.60(16)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$109.73(17)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$128.03(18)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{N} 2$	$118.27(18)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$125.99(19)$	$\mathrm{C} 14-\mathrm{C} 9-\mathrm{N} 2$	$121.99(19)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$105.91(16)$	$\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 15$	$114.9(2)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$135.31(17)$	$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$	$114.5(2)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$118.87(17)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H}^{\cdots} A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2^{\text {iii }}$	0.86	2.24	$3.062(2)$	159
$\mathrm{C}^{\text {iii }}-\mathrm{H} 5 \cdots \mathrm{O} 1^{\text {ii }}$	0.93	2.56	$3.254(3)$	132

Symmetry code: (iii) $-x, \frac{1}{2}+y, \frac{3}{2}-z$.
The H atoms of $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ groups were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA)$ and were allowed to refine as riding models, with $U_{\text {iso }}$ set equal to $1.2 U_{e q}\left(1.5\right.$ for $\left.\mathrm{CH}_{3}\right)$ of the carrier atoms.

Data collection: COLLECT (Nonius, 1999); cell refinement: EVALCCD (Duisenberg, 1998); data reduction: EVALCCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997; Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Öztürk, S., Akkurt, M., Özgür, M. Ü., Erçağ, A. \& Heinemann, F. W. (2003). Acta Cryst. E59, o569-o571.

organic papers

Pandeya, S. N., Sriram, D., Nath, G. \& De Clercq, E. (2000). Arzneim. Forschung. (Drug Res.), 50, 55-59.
Pandeya, S. N., Yogeeswari, P., Sriram, D., De Clercq, E., Pannecouque, C. \& Witvrouw, M. (1999). Chemotherapy, 45, 192-196.
Popp, F. D. \& Pajouhesh, H. (1982). J. Pharm. Sci. 17, 1052-1055.
Sarangapani, M. \& Reddy, V. M. (1994). Indian J. Pharm. Sci. 56, 174-177.
Sarciron, S. E., Audin, P., Delebre, I., Gabrion, C., Petavy, A. F. \& Paris, J. (1993). J. Pharm. Sci. 82, 605-609.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Singh, S. P., Shukla, S. K. \& Awasthi, L. P. (1983). Curr. Sci. 52, 766-769. Stewart, J. J. P. (1985). MOPAC. QCPE Program 445. Version 6.0. Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN 47405, USA.
Varma, R. S. \& Khan, I. A. (1977). Pol. J. Pharmacol. Pharm. 29, 549-594. Varma, R. S. \& Nobles, W. L. (1975). J. Pharm. Sci. 64, 881-882.

